煙流下洗現象 Table of contents 煙流下洗現象、模擬與限制 污染源附近建築物造成煙流擴散行為的改變非常劇烈,煙流中心向下移動造成地面嚴重燻煙,稱之為Plume Downwash 煙流下洗。
煙流擴散行為受到附近大氣紊流及渦流影響甚劇,而渦流的產生,除了垂直溫度梯度的熱力紊流之外,就屬氣流受到阻體所產生的機械紊流(渦流)最為嚴重 污染源附近最重要的阻體即是煙囪本身,以及鄰近的煙囪、廠房設備、建築物等等。 2維圖示如下: 建築物尾流 | | |:–:| | 建築物阻體在大氣氣流中所造成的擾動及渦漩(Hosker, R. 1984 in Atmospheric science and power production ) |
AQ Simulation Scheme: Plume Rise Model Enhancements (PRIME & PRIME2) 模式模擬方式 使用BPIPPRM 進行前處理將複雜的建築物平面座標系統予以簡化 解析出以煙囪為中心、36個方位建築物的長、寬、高 進行AERMOD/PRIME或ISC/PRIME等煙流模式模擬 模擬方式細節、範例、遠端執行系統詳建築物煙流下洗現象之模擬設定 煙囪頂下洗現象及模擬 風速越大、煙囪越粗、非流線形煙囪,下洗越嚴重 煙氣越熱、出口速度越大、受下洗現象影響越少,然能源浪費越大。 法規應用之煙流模式:須開啟煙囪頂下洗計算,以得到較保守結果。 風洞模擬個案:Cochran, B.(2003). A Case Study for the U.C. Davis Robert Mondavi Institute for Wine and Food Sciences. Presented at the Labs for the 21st Century Century , International Institude for Sustainable Laboratories, Adams Mark Hotel Denver, CO, p. 19. 經風洞模擬研究發現:規範之煙氣速過於嚴苛、有能源浪費之可能。 Reference American Society of Heating(2003), 2003 ASHRAE HANDBOOK : Heating, Ventilating, and Air-Conditioning Applications : Inch-Pound Edition (2003 ASHRAE HANDBOOK: HVAC Applications : I-P Edition) Cochran, B.(2003). A Case Study for the U.C. Davis Robert Mondavi Institute for Wine and Food Sciences. Presented at the Labs for the 21st Century Century, International Institude for Sustainable Laboratories , Adams Mark Hotel Denver, CO, p. 19. Hosker, R. (1984) Flow and diffusion near obstacles in Atmospheric Science and Power Production, Ch. 7, DOE/TIC-27601. Kukkonen, J. (1997). A DISPERSION MODELLING SYSTEM FOR URBAN AIR POLLUTION. Finnish Meteorological Institute, Helsinki, Finland. Olesen, H.R., Berkowicz, R., Ketzel, M., Lofstrom, P. (2009). Validation of OML, AERMOD/PRIME and MISKAM using the Thompson wind tunnel data set for simple stack-building configurations. Boundary-Layer Meteorol. 131, 73-83. Perry, S.G., Heist, D.K., Brouwer, L.H., Monbureau, E.M., and L.A. Brixley (2016). Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations , Atmospheric Environment, Vol. 42, 286-295. Petersen, R. L. and Guerra, S. A., (2018). PRIME2: Development and evaluation of improved building downwash algorithms for rectangular and streamlined structures . Atmospheric Environment, 173, 67-78. Randerson, D. (1984). Atmospheric science and power production (No. DOE/TIC-27601). USDOE Technical Information Center, Oak Ridge, TN. Schulman, L.L., Strimaitis, D.G., and Scire, J.S. (2000). Development and Evaluation of the PRIME Plume Rise and Building Downwash Model. Journal of the Air & Waste Management Association 50 (3):378–390. doi:10.1080/10473289.2000.10464017. USEPA (2019), Building Downwash Alpha Options in AERMOD , www.epa.gov, downwash_alpha_options_white_paper, 05-13-2019 USEPA(2021), Issues Related to Building Downwash in AERMOD , 2021,01