Trigger a full-script rerun from inside a fragment

Streamlit lets you turn functions into fragments, which can rerun independently from the full script. When a user interacts with a widget inside a fragment, only the fragment ruruns. Sometimes, you may want to trigger a full-script rerun from inside a fragment. To do this, call st.rerun inside the fragment.

Applied concepts

  • Use a fragment to rerun part or all of your app, depending on user input.

Prerequisites

streamlit>=1.33.0

  • This tutorial uses fragments, which require Streamlit version 1.33.0 or later.
  • This tutorial assumes you have a clean working directory called your-repository.
  • You should have a basic understanding of fragments and st.rerun.

Summary

In this example, you’ll build an app to display sales data. The app has two sets of elements that depend on a date selection. One set of elements displays information for the selected day. The other set of elements displays information for the associated month. If the user changes days within a month, Streamlit only needs to update the first set of elements. If the user selects a day in a different month, Streamlit needs to update all the elements.

You’ll collect the day-specific elements into a fragment to avoid rerunning the full app when a user changes days within the same month. If you want to jump ahead to the fragment function definition, see Build a function to show daily sales data.

<div style=>

Execution flow of example Streamlit app showing daily sales on the left and monthly sales on the right

</div>

Here’s a look at what you’ll build:

<Collapse title=”Complete code” expanded={false}>

import streamlit as st
import pandas as pd
import numpy as np
from datetime import date, timedelta
import string
import time


@st.cache_data
def get_data():
    """Generate random sales data for Widget A through Widget Z"""

    product_names = ["Widget " + letter for letter in string.ascii_uppercase]
    average_daily_sales = np.random.normal(1_000, 300, len(product_names))
    products = dict(zip(product_names, average_daily_sales))

    data = pd.DataFrame({})
    sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
    for product, sales in products.items():
        data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
    data.index = sales_dates
    data.index = data.index.date
    return data


@st.experimental_fragment
def show_daily_sales(data):
    time.sleep(1)
    with st.container(height=100):
        selected_date = st.date_input(
            "Pick a day ",
            value=date(2023, 1, 1),
            min_value=date(2023, 1, 1),
            max_value=date(2023, 12, 31),
            key="selected_date",
        )

    if "previous_date" not in st.session_state:
        st.session_state.previous_date = selected_date
    previous_date = st.session_state.previous_date
    st.session_state.previous_date = selected_date
    is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
    if is_new_month:
        st.rerun()

    with st.container(height=510):
        st.header(f"Best sellers, {selected_date:%m/%d/%y}")
        top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
        cols = st.columns([1, 4])
        cols[0].dataframe(top_ten)
        cols[1].bar_chart(top_ten)

    with st.container(height=510):
        st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
        bottom_ten = data.loc[selected_date].sort_values()[0:10]
        cols = st.columns([1, 4])
        cols[0].dataframe(bottom_ten)
        cols[1].bar_chart(bottom_ten)


def show_monthly_sales(data):
    time.sleep(1)
    selected_date = st.session_state.selected_date
    this_month = selected_date.replace(day=1)
    next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)

    st.container(height=100, border=False)
    with st.container(height=510):
        st.header(f"Daily sales for all products, {this_month:%B %Y}")
        monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
        st.write(monthly_sales)
    with st.container(height=510):
        st.header(f"Total sales for all products, {this_month:%B %Y}")
        st.bar_chart(monthly_sales.sum())


st.set_page_config(layout="wide")

st.title("Daily vs monthly sales, by product")
st.markdown("This app shows the 2023 daily sales for Widget A through Widget Z.")

data = get_data()
daily, monthly = st.columns(2)
with daily:
    show_daily_sales(data)
with monthly:
    show_monthly_sales(data)

</Collapse>

Example Streamlit app showing daily sales on the left and monthly sales on the right

Click here to see the example live on Community Cloud.

Build the example

Initialize your app

  1. In your_repository, create a file named app.py.
  2. In a terminal, change directories to your_repository and start your app.

    streamlit run app.py
    

    Your app will be blank since you still need to add code.

  3. In app.py, write the following:

    import streamlit as st
    import pandas as pd
    import numpy as np
    from datetime import date, timedelta
    import string
    import time
    

    You’ll be using these libraries as follows:

    • You’ll work with sales data in a pandas.DataFrame.
    • You’ll generate random sales numbers with numpy.
    • The data will have datetime.date index values.
    • The products sold will be “Widget A” through “Widget Z,” so you’ll use string for easy access to an alphabetical string.
    • (Optional) To help add emphasis at the end, you’ll use time.sleep() to slow things down and see the fragment working.
  4. Save your app.py file and view your running app.
  5. Click “Always rerun” or hit your “A” key in your running app.

    Your running preview will automatically update as you save changes to app.py. Your preview will still be blank. Return to your code.

Build a function to create random sales data

To begin with, you’ll define a function to randomly generate some sales data. It’s okay to skip this section if you just want to copy the function.

<Collapse title=”Complete function to randomly generate sales data” expanded={false}>

@st.cache_data
def get_data():
    """Generate random sales data for Widget A through Widget Z"""

    product_names = ["Widget " + letter for letter in string.ascii_uppercase]
    average_daily_sales = np.random.normal(1_000, 300, len(product_names))
    products = dict(zip(product_names, average_daily_sales))

    data = pd.DataFrame({})
    sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
    for product, sales in products.items():
        data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
    data.index = sales_dates
    data.index = data.index.date
    return data

</Collapse>

  1. Use an @st.cache_data decorator and start your function definition.

    @st.cache_data
    def get_data():
        """Generate random sales data for Widget A through Widget Z"""
    

    You don’t need to keep re-randomizing the data, so the caching decorator will randomly generate the data once and save it in Streamlit’s cache. As your app reruns, it will use the cached value instead of recomputing new data.

  2. Define the list of product names and assign an average daily sales value to each.

        product_names = ["Widget " + letter for letter in string.ascii_uppercase]
        average_daily_sales = np.random.normal(1_000, 300, len(product_names))
        products = dict(zip(product_names, average_daily_sales))
    
  3. For each product, use its average daily sales to randomly generate daily sales values for an entire year.

        data = pd.DataFrame({})
        sales_dates = np.arange(date(2023, 1, 1), date(2024, 1, 1), timedelta(days=1))
        for product, sales in products.items():
            data[product] = np.random.normal(sales, 300, len(sales_dates)).round(2)
        data.index = sales_dates
        data.index = data.index.date
    

    In the last line, data.index.date strips away the timestamp, so the index will show clean dates.

  4. Return the random sales data.

        return data
    
  5. (Optional) Test out your function by calling it and displaying the data.

    data = get_data()
    data
    

    Save your app.py file to see the preview. Delete these two lines or keep them at the end of your app to be updated as you continue.

Build a function to show daily sales data

Since the daily sales data updates with every new date selection, you’ll turn this function into a fragment. As a fragment, it can rerun independently from the rest of your app. You’ll include an st.date_input widget inside this fragment and watch for a date selection that changes the month. When the fragment detects a change in the selected month, it will trigger a full app rerun so everything can update.

<Collapse title=”Complete function to display daily sales data” expanded={false}>

@st.experimental_fragment
def show_daily_sales(data):
    time.sleep(1)
    selected_date = st.date_input(
        "Pick a day ",
        value=date(2023, 1, 1),
        min_value=date(2023, 1, 1),
        max_value=date(2023, 12, 31),
        key="selected_date",
    )

    if "previous_date" not in st.session_state:
        st.session_state.previous_date = selected_date
    previous_date = st.session_state.previous_date
    st.session_state.previous_date = selected_date
    is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
    if is_new_month:
        st.rerun()

    st.header(f"Best sellers, {selected_date:%m/%d/%y}")
    top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
    cols = st.columns([1, 4])
    cols[0].dataframe(top_ten)
    cols[1].bar_chart(top_ten)

    st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
    bottom_ten = data.loc[selected_date].sort_values()[0:10]
    cols = st.columns([1, 4])
    cols[0].dataframe(bottom_ten)
    cols[1].bar_chart(bottom_ten)

</Collapse>

  1. Use an @st.experimental_fragment decorator and start your function definition.

    @st.experimental_fragment
    def show_daily_sales(data):
    

    Since your data will not change during a fragment rerun, you can pass the data into the fragment as an argument.

  2. (Optional) Add time.sleep(1) to slow down the function and show off how the fragment works.

        time.sleep(1)
    
  3. Add an st.date_input widget.

        selected_date = st.date_input(
            "Pick a day ",
            value=date(2023, 1, 1),
            min_value=date(2023, 1, 1),
            max_value=date(2023, 12, 31),
            key="selected_date",
        )
    

    Your random data is for 2023, so set the minimun and maximum dates to match. Use a key for the widget because elements outside the fragment will need this date value. When working with a fragment, it’s best to use Session State to pass information in and out of the fragment.

  4. Initialize "previous_date" in Session State to compare each date selection.

        if "previous_date" not in st.session_state:
            st.session_state.previous_date = selected_date
    
  5. Save the previous date selection into a new variable and update "previous_date" in Session State.

        previous_date = st.session_state.previous_date
        st.session_state.previous_date = selected_date
    
  6. Call st.rerun() if the month changed.

        is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
        if is_new_month:
            st.rerun()
    
  7. Show the best sellers from the selected date.

        st.header(f"Best sellers, {selected_date:%m/%d/%y}")
        top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
        cols = st.columns([1, 4])
        cols[0].dataframe(top_ten)
        cols[1].bar_chart(top_ten)
    
  8. Show the worst sellers from the selected date.

        st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
        bottom_ten = data.loc[selected_date].sort_values()[0:10]
        cols = st.columns([1, 4])
        cols[0].dataframe(bottom_ten)
        cols[1].bar_chart(bottom_ten)
    
  9. (Optional) Test out your function by calling it and displaying the data.

    data = get_data()
    show_daily_sales(data)
    

    Save your app.py file to see the preview. Delete these two lines or keep them at the end of your app to be updated as you continue.

Build a function to show monthly sales data

Finally, let’s build a function to display monthly sales data. It will be similar to your show_daily_sales function but doesn’t need to be fragment. You only need to rerun this function when the whole app is rerunning.

<Collapse title=”Complete function to display daily sales data” expanded={false}>

def show_monthly_sales(data):
    time.sleep(1)
    selected_date = st.session_state.selected_date
    this_month = selected_date.replace(day=1)
    next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)

    st.header(f"Daily sales for all products, {this_month:%B %Y}")
    monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
    st.write(monthly_sales)

    st.header(f"Total sales for all products, {this_month:%B %Y}")
    st.bar_chart(monthly_sales.sum())

</Collapse>

  1. Start your function definition.

    def show_monthly_sales(data):
    
  2. (Optional) Add time.sleep(1) to slow down the function and show off how the fragment works.

        time.sleep(1)
    
  3. Get the selected date from Session State and compute the first days of this and next month.

        selected_date = st.session_state.selected_date
        this_month = selected_date.replace(day=1)
        next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
    
  4. Show the daily sales values for all products within the selected month.

        st.header(f"Daily sales for all products, {this_month:%B %Y}")
        monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
        st.write(monthly_sales)
    
  5. Show the total sales of each product within the selected month.

        st.header(f"Total sales for all products, {this_month:%B %Y}")
        st.bar_chart(monthly_sales.sum())
    
  6. (Optional) Test out your function by calling it and displaying the data.

    data = get_data()
    show_daily_sales(data)
    show_monthly_sales(data)
    

    Save your app.py file to see the preview. Delete these three lines when finished.

Put the functions together together to create an app

Let’s show these elements side-by-side. You’ll display the daily data on the left and the monthly data on the right.

  1. If you added optional lines at the end of your code to test your functions, clear them out now.

  2. Give your app a wide layout.

    st.set_page_config(layout="wide")
    
  3. Get your data.

    data = get_data()
    
  4. Add a title and description for your app.

    st.title("Daily vs monthly sales, by product")
    st.markdown("This app shows the 2023 daily sales for Widget A through Widget Z.")
    
  5. Create columns and call the functions to display data.

    daily, monthly = st.columns(2)
    with daily:
        show_daily_sales(data)
    with monthly:
        show_monthly_sales(data)
    

Make it pretty

Now, you have a functioning app that uses a fragment to prevent unnecessarily redrawing the monthly data. However, things aren’t aligned on the page, so you can insert a few containers to make it pretty. Add three containers into each of the display functions.

  1. Add three containers to fix the height of elements in the show_daily_sales function.

    @st.experimental_fragment
    def show_daily_sales(data):
        time.sleep(1)
        with st.container(height=100): ### ADD CONTAINER ###
            selected_date = st.date_input(
                "Pick a day ",
                value=date(2023, 1, 1),
                min_value=date(2023, 1, 1),
                max_value=date(2023, 12, 31),
                key="selected_date",
            )
    
        if "previous_date" not in st.session_state:
            st.session_state.previous_date = selected_date
        previous_date = st.session_state.previous_date
        previous_date = st.session_state.previous_date
        st.session_state.previous_date = selected_date
        is_new_month = selected_date.replace(day=1) != previous_date.replace(day=1)
        if is_new_month:
            st.rerun()
    
        with st.container(height=510): ### ADD CONTAINER ###
            st.header(f"Best sellers, {selected_date:%m/%d/%y}")
            top_ten = data.loc[selected_date].sort_values(ascending=False)[0:10]
            cols = st.columns([1, 4])
            cols[0].dataframe(top_ten)
            cols[1].bar_chart(top_ten)
    
        with st.container(height=510): ### ADD CONTAINER ###
            st.header(f"Worst sellers, {selected_date:%m/%d/%y}")
            bottom_ten = data.loc[selected_date].sort_values()[0:10]
            cols = st.columns([1, 4])
            cols[0].dataframe(bottom_ten)
            cols[1].bar_chart(bottom_ten)
    
  2. Add three containers to fix the height of elements in the show_monthly_sales function.

    def show_monthly_sales(data):
        time.sleep(1)
        selected_date = st.session_state.selected_date
        this_month = selected_date.replace(day=1)
        next_month = (selected_date.replace(day=28) + timedelta(days=4)).replace(day=1)
    
        st.container(height=100, border=False) ### ADD CONTAINER ###
    
        with st.container(height=510): ### ADD CONTAINER ###
            st.header(f"Daily sales for all products, {this_month:%B %Y}")
            monthly_sales = data[(data.index < next_month) & (data.index >= this_month)]
            st.write(monthly_sales)
    
        with st.container(height=510): ### ADD CONTAINER ###
            st.header(f"Total sales for all products, {this_month:%B %Y}")
            st.bar_chart(monthly_sales.sum())
    

    The first container creates space to coordinate with the input widget in the show_daily_sales function.

Next steps

Continue beautifying the example. Try using st.plotly_chart or st.altair_chart to add labels to your charts and adjust their height.